If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=80x-0.5x^2-(40x+300)
We move all terms to the left:
0-(80x-0.5x^2-(40x+300))=0
We add all the numbers together, and all the variables
-(80x-0.5x^2-(40x+300))=0
We calculate terms in parentheses: -(80x-0.5x^2-(40x+300)), so:We get rid of parentheses
80x-0.5x^2-(40x+300)
determiningTheFunctionDomain -0.5x^2+80x-(40x+300)
We get rid of parentheses
-0.5x^2+80x-40x-300
We add all the numbers together, and all the variables
-0.5x^2+40x-300
Back to the equation:
-(-0.5x^2+40x-300)
0.5x^2-40x+300=0
a = 0.5; b = -40; c = +300;
Δ = b2-4ac
Δ = -402-4·0.5·300
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-10\sqrt{10}}{2*0.5}=\frac{40-10\sqrt{10}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+10\sqrt{10}}{2*0.5}=\frac{40+10\sqrt{10}}{1} $
| 7x+20x+90=36 | | 500=16x-15 | | -3-5x=-11 | | -3-5h=-11 | | 9(-3m-8)+4=15(m-2)-17 | | 9(-3m-8)+4=15m(m-2)-17 | | X+17/x+34=3/2 | | (2x+1)(x-4)+(x-2)^2=3x(x+2) | | 4x-13+x8=180 | | (2x-1)(x-3)=(2x-3)(x-1) | | 6(2+2x)=30 | | 3(-20+x=15) | | A(t)=100(1.04)^5 | | 5x-42=23 | | d+15)+34=89 | | 28+6g=244 | | 3(-5m+5)-3=7(3m-2)+2 | | 52=12+4k | | 72x=215 | | F2=2x+4 | | y-23=57 | | 2(5m+2)-2m=2(2m+3)+1 | | 0.75(m+9)=15 | | x=1/2(x+300)+300 | | 130x31.67x=500 | | 121/70=-1/210s | | 1/2(2/3e-3+2e)=-4(1/8e+1-e | | 3=(w+1)+1 | | 2f+22=180 | | 5(x+3=2x3 | | 5b+3=2+7(b+6) | | 7(v-6)+4v=8 |